Some Fast Algorithms for Sequentially Semiseparable Representations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast algorithms for hierarchically semiseparable matrices

Semiseparable matrices and many other rank-structured matrices have been widely used in developing new fast matrix algorithms. In this paper, we generalize the hierarchically semiseparable (HSS) matrix representations and propose some fast algorithms for HSS matrices. We represent HSS matrices in terms of general binary HSS trees and use simplified postordering notation for HSS forms. Fast HSS ...

متن کامل

Fast quantum algorithms for approximating some irreducible representations of groups

We consider the quantum complexity of estimating matrix elements of unitary irreducible representations of groups. For several finite groups including the symmetric group, quantum Fourier transforms yield efficient solutions to this problem. Furthermore, quantum Schur transforms yield efficient solutions for certain irreducible representations of the unitary group. Beyond this, we obtain poly(n...

متن کامل

Efficient Parallel Algorithms for Hierarchically Semiseparable Matrices

Recently, hierarchically semiseparable (HSS) matrices have been used in the development of fast direct sparse solvers. Key applications of HSS algorithms, coupled with multifrontal solvers, appear in solving certain large-scale computational inverse problems. Here, we develop massively parallel HSS algorithms appearing in these solution methods, namely, parallel HSS construction using the rank ...

متن کامل

Efficient Scalable Algorithms for Hierarchically Semiseparable Matrices

Hierarchically semiseparable (HSS) matrix algorithms are emerging techniques in constructing the superfast direct solvers for both dense and sparse linear systems. Here, we develope a set of novel parallel algorithms for the key HSS operations that are used for solving large linear systems. These include the parallel rank-revealing QR factorization, the HSS constructions with hierarchical compr...

متن کامل

Fast and Stable Algorithms for Banded Plus Semiseparable Systems of Linear Equations

We present fast and numerically stable algorithms for the solution of linear systems of equations, where the coefficient matrix can be written in the form of a banded plus semiseparable matrix. Such matrices include banded matrices, banded bordered matrices, semiseparable matrices, and block-diagonal plus semiseparable matrices as special cases. Our algorithms are based on novel matrix factoriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2005

ISSN: 0895-4798,1095-7162

DOI: 10.1137/s0895479802405884